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Stochastic resonance via dynamical symmetry breaking in a modulated bistable potential

Subir K. Sarkaf and Debashish Bose
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
(Received 5 May 1998

We demonstrate the possibility of observing stochastic resonance in the dynamics of the éqm}iﬁon
—x3+ a coswt+noise when the amplitud@y) of modulation is substantially higher than the static threshold
of dynamical hysteresis. This is done by utilizing the phenomenon of dynamical symmetry breaking in which
the noiseless hysteresis loop undergoes a bifurcation, leading to the formation of two stable and equivalent but
symmetry broken trajectories. Stochastic resonance can be observed by applying an additional sinusoidal
signal.[S1063-651X98)02611-1

PACS numbses): 05.45:+b, 42.65.Pc, 02.96:p, 42.55-f

I. INTRODUCTION cess. The primary objective of this paper is to demonstrate
the existence of this internal time scale and describe one
The phenomenon of stochastic resonance has been a syiwssible application in the context of stochastic resonance.
ject of intense investigation in recent years and many new his paper is organized as follows: In Sec. Il we describe the
areas of applicability have been discovered since the earlgoncept of dynamical symmetry breaking when there is no
proposals for its possible relevance in the context of geonoise. Detection and quantification of dynamical symmetry
physical dynamic$l]. The essence of the idea of stochasticbreaking when noise is present forms the subject of Sec. III.
resonance is that a signal can be amplified by letting it infludn Sec. IV we demonstrate the application in the context of
ence the dynamics of a system that is either explicitly noisystochastic resonance. Finally, in Sec. V we present a discus-
or has some kind of chaos in it that mimics the presence o$ion of the results, point out the directions in which further
noise[2—11]. And resonance occurs when some characteriswork needs to be done and some connections to previous
tic internal time scale of the dynamics matches the time peworks.
riod of the applied signal. The most frequently cited example
qf this pheno_mer_mn is the ove_rdamped one-dimen_sional mo- Il. DYNAMICAL SYMMETRY BREAKING
tion of a particle in a symmetric double-well potential that is WITHOUT NOISE
subjected to a periodic modulation and a Gaussian white
noise. Here the noise controls the time scale of the incoher- The basic model we deal with is given b$2—17
ent thermal tunneling between the two potential wells and
the peri_odic modulat_io_n is the exterr_1a| signal that one wants x(H)=x—x3+a coswt+f(1). (1)
to amplify. Not surprisingly the amplitude of the modulation

s tak.e_n to be so small that, by itself, the_ signal cannot induceI'his describes the overdamped one-dimensional dynamics of
transitions between the two wells. In this paper we present a particle in a bistable potentidl(x) = — x2/2+ x*/4. The

mechanism for realizing stochastic resonance in this syster% odulating potential is- ax coset and f(t) is the tempo-
when the signal referred to above is very large in amplitudé];” deltagcgrrelated rar?dom Gwaussian noise. On thpe right
and is actually a part of the dynamics before the signal i y ' 9

added. This is done by exploiting the property of dynamical and side of Eq(1), the terma cosawt normally represents

symmetry breaking of the attractor as the frequency oithe signal one wants to amplify and the amplitudg is

modulation exceeds a critical value for a fixed value of themUCh less than the static thresholdl ] of dynamical hys-

amplitude of modulation when this amplitude is higher thante'es!s. Actuall_yac equals .2/3@ and is the minimum value
the static threshold of dynamical hysteresis. The signal to b f o above Wh'(.:h the particle can make transn!ons between
amplified in our case is an additional sinusoidal perturbatioﬁ e two poten_tlal wells arounok_= *1 even wlthout the
that, of course, has very small amplitude. In the present stud oise. The point of departu“re In (?'ur study is to create a
the large amplitude modulation serves the purpose of crea -‘?f'n't'on of the_two stable states be.twee'? which noise
ing two distinct and stable attractors with broken symmetry.WIII ever_1tually '”duc‘? transitions by including the term
The noise produces tunneling between these two attractofs cosat in f[he dyn_am|cs itseltsignal ha_s to be added later
with a characteristic time scale that becomes the relevarﬂn) and taking arbitrary values af sufficiently greater than

internal time scale. This time scale is then made to match th C'.The creatlon (?f thgse tW(.) “states” rgsults from th? fol-
signal time period by tuning the strength of the noise— °Wing considerations: Consider E{l) without the noise

leading to the observation of stochastic resonance in the pr¢€M and, to make simple analytical demonstration possible,
take a value ofx>1. Then the asymptotic periodic solution

to the damped dynamics is given by
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to a very good approximation providedlis sufficiently high. 1.00 ; S o © -
Substitution of Eq(2) in Eq. (1) leads to ao”® °
0.75 g
3a?
xo( 1-5—-%3| =0, ) 7
& 0.50 i
which means eithex,=0 or xo==* 1—3a?%20?. If X, E
=0, it corresponds to a situation where the average position 025 E
of the particle is at the point of reflection symmetm=0) ) a
of the bistable potential. Since in the dynamics described by 8
Eq. (1) there is no preference between positive and negative 0 i’

sides of the poinx=0, we define an asymptotic solution 0 2 4 6
with averagex coordinate equal to zero to be a symmetry
conserving one. Sincg, has to be realxy,=0 is the only
possibility whena/w is greater than/2/3. If, however,a/w FIG. 1. Mean position of the particle on the attrac{a} as a
is less thany2/3 there are two extra real solutions given by function of frequencyw for a=1.0.

Xo=*1—3a?/2w?. Since these two new solutions do not
have the average position of the particle at the poin0, we

call them symmetry broken ones. Thus, in this paper, the’r " =) . .
y y bap which is, in general, a function of the value of amplituds.

expression “dynamical symmetry breaking” is used in the hi ise has b ied ¢ | £ val
very specific sense of the average position of the patrticle onhis exercise has been carried out for a large range of values
of the amplitude above the static threshalgd for dynamic

the asymptotic periodic solution to the dynamics not corre—h ; h . . g his di
sponding to the point of reflection symmetry of the bistable ysteresis and the data is summarlzed In Fig. 2 In this dia-
potential. The full symmetry of Eq(1) without the noise 9/@M for a given value of the amplitude, as one increases the

term is that it is invariant under the joint operationsxefs  frequency the hysteresis loop aré¥(a,w), defined as

—x and t—t+(2n+1)m/® wheren is any non-negative A(a, 0) = a$x(t)d(coswt) on the periodic attractor, always
integer. Thus any solution should map itself onto anothef'créases first until it reaches a maximum on reaching the
solution under these symmetry transformations. On inspeciashed line and then starts decreasing. As one increases the
tion of the solution given by Eq2) it is obvious that this is reduency even further DSB appears on reaching the continu-
indeed the case. =0 the solution maps onto itself under °US line. Thus, for anya.w) point to the right of the con-
these transformations whereas fgr= 80 the mapping is tinuous line, there are two attractors with distinct domains of
onto a solution withx,=— 3. Thus, according to our no- attraction. In the large amplitude region, as we have shown
menclature, “dynamical symmetry breaking” also stands foranalytlcally, “’C(a). should _be proportional te so that the

the degeneracy of the solutions. However, we still have toQ‘IOpe of the continuous line should be unity on a log-log

check the nature of the stability of the solutions given by Eq.pIOt' Th_is is_ indeed bor_ne out by the _n_umerical resulf[s pre-
7) sented in Fig. 2. What is a little surprising, however, is that

If \ is the factor by which an initial perturbation to the this proportionality continues to hold for values of amplitude

solution grows over one cycle of the modulation over a time2!l the way up to very close to unity even though the deriva-

period T(=27/w), then the stability exponer? is defined tion given above seems.to sugg_est that the amplitude should
by Q=In \. From the solution given by Ed2) it is easy to be much_ larger than unity for this property to hold well. In
show thatQ is given by (1-3x3—3a?/20w?). Thus in the tEe amplitude rarr]lge 0ﬁ°<.a<g f(F belngfversy c!osedg)_p
symmetry broker(SB) phase Ko 0) Q is given by Qes= there is yet another associated feature of DSB in addition to

—2(1-2x? whereas in the symmetry conservé8C) .
phase k,=0) Q is given by Qgc=(1—3x?). Here x 10
= a/w. This immediately shows that when w is less than
\J2/3 the SC solution is unstable whereas the SB solutions
are stable. To summarize, fa/ > 2/3 the only solution 10°}
that exists is the SC one and it is stable whereasaitas
</2/3 the SC solution still exists but is unstable. In this 8
latter domain there are two SB solutions also and they are the
stable ones now and hence are the attractors of the dynamics 10°¢
with nonoverlapping domains of attraction. This simple dem-
onstration of the existence of dynamical symmetry breaking
(DSB) as well as the fact that only the raiid w (rather than
a and o separately is the relevant parameter was possible 10°
only whena is much greater than unity.

When « is greater thany, but is not large in magnitude,
we have to resort to numerics to demonstrate the existence of FIG. 2. Phase diagram for the maximal hysteresis loss and the
DSB. For example, in Fig. 1, we show the mean positiononset of dynamical symmetry breaking in the amplitude-frequency
((x)) of the particle on the attractor, defined Kx) (a-w) plane.

w

=T 1fT*x(t)dt, as a function of frequency, with a=1.0.
symmetry breaking appears at a critical frequenay,
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FIG. 3. Hysteresis loop are® «,») and the mean positiofx), FIG. 4. Histogram for the cycle averagedcoordinate (x))

denoted by the symbol® and [J, respectively, are plotted as a shown for four different values of the time period)¢ (&) T
function of frequencyw) in the same diagram to show that the dip =0.07, (b) T=0.055, (c) T=0.045, andd) T=0.035. The values
in the loop area takes place exactly at the onset of dynamical synef amplitude(a) and the dimensionless temperatiee are 100.0
metry breaking. Here amplituder) equals 0.8. The vertical line at and 0.6, respectively.
the critical frequency is a guide to the eye.

vious paragraph the procedure we adopt to detect the pres-
the nonvanishing value of the average value @bordinate. ence of DSB when noise is applied is the following: From
A plot of the areaA(«,w) of the hysteresis loop as a func- thex(t) data generated via integration of the Langevin equa-
tion of frequency shows a local dip at=w.(@). Figure 3  tion, compute the average value of thecoordinate during
shows data in support of this observation fp=0.8. How-  successive slabs of duratidn (the time period of modula-
ever, this local dip disappears wherexceedd. Presently, tion) on the time axis. Generate a histogram for these values

we do not understand this feature at all. of (x). Then study this sequence of histograms as a function
of frequency. At the onset of DSB the histogram ¢&j will
IIl. DYNAMICAL SYMMETRY BREAKING undergo a transition from unimodal to bimodal aroumq
IN THE PRESENCE OF NOISE =0. That this is indeed the case is illustrated in Figs) 4

4(d) for «=100.0. The dimensionless temperatiez de-

When noise is turned on in Edl), the detection and fined as the ratio of the Boltzmann constant times the tem-
guantification of DSB immediately become somewhat moreperature divided by the height of the barrier separating the
complex. The dynamics is stochastic now and the concept afvo potential minima, equals 0.6 here. The actual quantifica-
an attractor is no longer applicable. The motivation behindion of the extent of DSB can be done in several ways. For
introducing the particular definition of DSB in the noiselessexample, one cafi) take the positions of the two peaks or
case was that, on each attractor, the particle spends mo(#) try to fit some function to the histogram that will contain
time on one side ok=0 than on the other and the averagethe extent of symmetry breaking as a parameter. Here we
value of thex coordinate on each attractor is a natural andadopt the second procedure in which the distribufx))
simple quantifier of the extent of symmetry breaking. Thisis fitted as a sum of two Gaussians with the same wadtiut
guantification, however, becomes immediately inapplicableentered at- 6. Weights of the two Gaussians, andw,,
when noise is turned on since this average value will be zerare allowed to be different in the fitting procedure to accom-
This follows from the fact that the particle will tunnel back modate the possibility that the run may not have been long
and forth between the two potential wells and spend equadnough for the particle to have spent equal time in the two
time on both(since the characteristics of the noise is inde-wells. § is taken to be the measure of symmetry breaking.
pendent of the position coordinatéfo motivate the defini-  Clearly this procedure is somewhat ad hoc since we have not
tions that we are going to introduce we begin by consideringoroved that the functional form of the histogram is actually
the noise to be a perturbation. If the parameters of the dyef the type assumed. In any case Fig. 5 shows a pl& of
namics are such that, without noise, the attractor is of thehus calculatedin analogy to Fig. 1 for the noiseless case
symmetry conserved type, then the effect of adding the noise Next, we address the issue of temporal correlations in the
is, roughly speaking, of the following nature: On a time scalediscrete time series faix). As is standard, the autocorrela-
of the order of the period of modulation the particle motiontion function is calculated and Fig. 6 presents some typical
is sinusoidal. However, the cycle averagedcoordinate data both on linear and semilogarithmic formats. The fact
((x)) [18] around which this approximately sinusoidal mo- that the semilogarithmic plot of Fig.() is a straight line to
tion takes place keeps on fluctuating due to the presence afvery good approximation means that there is indeed a very
the noise—with the most probable value (o) being zero. well defined and unique time scale that corresponds to inter-
On the other hand, for parameter values corresponding twell tunneling. This time scale{w) is the analog of the
symmetry broken dynamicén the absence of noisethe  conventional Kramers’ time scale that one gets in the ab-
distribution of the cycle averagedcoordinate will have two sence of the modulation and it describes and quantifies tem-
separate peaks symmetrically situated aroxsd. poral correlations on a time scale much longer than the pe-

On the basis of the intuitive picture presented in the preriod of modulation—at least in the strongly symmetry
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1.0 - - T . 15 than a few times the period of modulation more and more
. * effectively. In the limit of w going to infinity this autocan-
0.8} o . a ° cellation effect is complete and the modulation drops out of
° {10 the dynamics on this larger time scale. Théisnd 7 will
__ 06} A _ assume values that one gets from Eq.without the modu-
g 4 s lation term. The fact that the limiting value & should be
“ o4l s © close to unity follows from the form of the bistable potential
.° nn 15 whereas the autocorrelation time for the modulation free case
o2t e 0 can be computed separately and it turns out to be samg as
ﬁj This has been checked for several values of the dimension-
0 . . 0 less temperaturée) and amplitude(e) and 7, is found to
10 100 1000 10000 depend on temperature only—as is expected. For example, in

Fig. 5, the dimensionless temperature is 0.6 and the expected
saturation value of(w), as found from the separate Langevin
FIG. 5. Autocorrelation timdr(w)] for (x) and the extent of integration of the modulation free case, is 11.6. To within
symmetry breakingd(w)] are plotted as a function of frequen@y)  numerical uncertainties this agrees very well with the data
with €=0.6 anda=100.0. Symbols foi(w) and (w) are® and  for #(w) in the largew limit. The other important feature that
L, respectively. has emerged out of our numerical computations is that both
and § seem to depend only on the ratidw for large ampli-
broken regime and for large amplitudes of modulation. Intudes for a given value of the temperature. We must point
Fig. 5 we plot f{w) also. We wish to emphasize that the out that the procedure that we have adopted for detection and
existence of this new time scale and its dependence on frewuantification of DSB works only when noise can be treated
quency is the central point of this paper. In Fig. 5 notice thaias a relatively weak perturbation, i.e., the period of modula-
as frequency becomes very largesaturates to a value close tion at the symmetry breaking transition is much less than
to unity andr(w) saturategapart from numerical uncertain- the Kramers’ tunneling time for the unperturbed case. For a
ties) to a constant,. The reason for this saturation is that asfixed temperature, this will be more and more accurately
the frequency becomes very large the modulation of the fornvalid as the amplitudéa) increases since the critical fre-
a coswt averages itself out to zero on a time scale largeruency will also then keep on increasing. When noise cannot
be treated as a weak perturbation the situation is much more
1.00 difficult and we have no simple analog to the above-
@) mentioned prescription.

®
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IV. STOCHASTIC RESONANCE
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It should be apparent from the discussion in the previous
section that the temporal properties of the cycle averaged
coordinate in the solution of Eq1) are very similar, if not
qualitatively identical, to the real time solution of the same
equation without the modulation—although with a frequency
0 50 100 150 dependent time scale afw) that is analogous ttout differ-

t ent from the Kramers’ time for thermal tunneling in the
modulation free case. This is true provided the amplititge

(b) is sufficiently high for the given value of the temperature.
Thus we have all the ingredients needed for observing sto-
chastic resonanc&R)—although now corresponding to the
dynamics of the cycle averagedcoordinate and with{w)
playing the role of the internal time scale. Singgw) de-
pends on amplitudéy) and frequencyw) also in addition to
the temperature we have more control parameters to tune the
internal time scale. Once this is noted, it is straightforward to
observe SR by applying a signal by way of adding a term of
the form vy cosw't to the right-hand side of Eql). For
10 20 30 10 example, in Fig. 7 we show this effect by plotting the re-
sponse as a function of temperature for a fixed signal term. It
is to be noted that the response plotted here is not the signal-

FIG. 6. Normalized autocorrelation functia®(t)=((x)(t+t,)  t0-noise ratio, as is more conventional. Rather we simply
X (x)(to) M{(X)2)(t) plotted in (a) linear format and(b) semiloga- take the time series for the cycle averagedoordinate and
rithmic format for the parameter values=10.0, T=0.25, ande =~ compute the power in the first harmonic corresponding to the
=0.4. Here time is understood to be the cycle number multiplied bysignal frequency. For the purpose of demonstration, which is
the period T) of modulation. our goal here, it is adequate. We have made a systematic

I
[
O

< <x>(t+t0) <X>(to) >

>

[]

< <x>(t+t0) <x>(t ) >
jo]

0.01
0

t
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0.004 y y using the language of switching to describe the dynamics
since it becomes quite meaningless to do so at the high val-
o ues of amplitude and frequency that we are primarily inter-
0.003 ¢ * 1 ested in. The hysteresis loop looks almost elliptical in this
N parameter domain. But we should point out that what is de-
. . scribed in the literature as the presence or absence of deter-
] ministic switching at lower values of the amplitude does
smoothly evolve into the concept of dynamical symmetry
0.001+ ) breaking although they do not quite mean the same thing.
There are some issues arising out of our results that need to
be addressedi) The qualitative nature of th@iscretg time
0 . ‘ evolution of the cycle averagedcoordinate in the dynamics
0.2 0.4 0.6 0.8 of Eq. (1) seems to be very similar to tHeontinuou$ time
e evolution ofx(t) in Eq. (1) without the modulation term. As
we have shown here, there is a very well defined interwell
FIG. 7. Response is plotted as a function of the dimensionlesﬁjnne"ng time that can be thought of as a pseudo_Kramers’
temperaturée) with the amplitude and the time period of the signal time. |Is there is a quantitatively precise mapping between
equal to 0.03 each. these two problems on a time scale sufficiently longer than
i the period of modulation? That will make it possible to have
study of the temperature at which the response peaks as g analytical derivation of the tunneling timéw). (ii) It is

function of the frequency of the signal to be amplified and itstraightforward to extend the model of the single damped
agrees with the understanding that already exists in the lit-

) . oscillator to that of a coupled lattice of such oscillators. In
erature for the more conventionaodulation freg case.  qgition to the possibility of enriching the phenomena that

Also the power in the response is found to be proportional 1, 4jready known in these problems, including array en-
the square of the signal amplitudg)—as is expected. hanced stochastic resonance, this can serve as a more micro-
scopic model exhibiting dynamical phase transiti¢t8—
V. DISCUSSION 28]. In the context of this last problem it will obviously be

In this paper we have reported on the phenomenon opecessary to properly define and quantify symmetry break-

dynamical symmetry breaking in a modulated bistable poten|_ng. We .hope that the discussion presented in Sec. Il of this
tial well in some detail and have demonstrated the possibilit)f"aper will serve as a prelude to that.

of its application_ in the context of _stocha_stic resonance. It ACKNOWLEDGMENT
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