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Stochastic resonance via dynamical symmetry breaking in a modulated bistable potential

Subir K. Sarkar* and Debashish Bose†

School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
~Received 5 May 1998!

We demonstrate the possibility of observing stochastic resonance in the dynamics of the equationẋ(t)5x
2x31a cosvt1noise when the amplitude~a! of modulation is substantially higher than the static threshold
of dynamical hysteresis. This is done by utilizing the phenomenon of dynamical symmetry breaking in which
the noiseless hysteresis loop undergoes a bifurcation, leading to the formation of two stable and equivalent but
symmetry broken trajectories. Stochastic resonance can be observed by applying an additional sinusoidal
signal.@S1063-651X~98!02611-7#

PACS number~s!: 05.45.1b, 42.65.Pc, 02.90.1p, 42.55.2f
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I. INTRODUCTION

The phenomenon of stochastic resonance has been a
ject of intense investigation in recent years and many n
areas of applicability have been discovered since the e
proposals for its possible relevance in the context of g
physical dynamics@1#. The essence of the idea of stochas
resonance is that a signal can be amplified by letting it in
ence the dynamics of a system that is either explicitly no
or has some kind of chaos in it that mimics the presence
noise@2–11#. And resonance occurs when some characte
tic internal time scale of the dynamics matches the time
riod of the applied signal. The most frequently cited exam
of this phenomenon is the overdamped one-dimensional
tion of a particle in a symmetric double-well potential that
subjected to a periodic modulation and a Gaussian w
noise. Here the noise controls the time scale of the inco
ent thermal tunneling between the two potential wells a
the periodic modulation is the external signal that one wa
to amplify. Not surprisingly the amplitude of the modulatio
is taken to be so small that, by itself, the signal cannot ind
transitions between the two wells. In this paper we prese
mechanism for realizing stochastic resonance in this sys
when the signal referred to above is very large in amplitu
and is actually a part of the dynamics before the signa
added. This is done by exploiting the property of dynami
symmetry breaking of the attractor as the frequency
modulation exceeds a critical value for a fixed value of
amplitude of modulation when this amplitude is higher th
the static threshold of dynamical hysteresis. The signal to
amplified in our case is an additional sinusoidal perturbat
that, of course, has very small amplitude. In the present st
the large amplitude modulation serves the purpose of cr
ing two distinct and stable attractors with broken symme
The noise produces tunneling between these two attrac
with a characteristic time scale that becomes the relev
internal time scale. This time scale is then made to match
signal time period by tuning the strength of the noise
leading to the observation of stochastic resonance in the
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cess. The primary objective of this paper is to demonstr
the existence of this internal time scale and describe
possible application in the context of stochastic resonan
This paper is organized as follows: In Sec. II we describe
concept of dynamical symmetry breaking when there is
noise. Detection and quantification of dynamical symme
breaking when noise is present forms the subject of Sec.
In Sec. IV we demonstrate the application in the context
stochastic resonance. Finally, in Sec. V we present a dis
sion of the results, point out the directions in which furth
work needs to be done and some connections to prev
works.

II. DYNAMICAL SYMMETRY BREAKING
WITHOUT NOISE

The basic model we deal with is given by@12–17#

ẋ~ t !5x2x31a cosvt1 f ~ t !. ~1!

This describes the overdamped one-dimensional dynamic
a particle in a bistable potentialU(x)52x2/21x4/4. The
modulating potential is2ax cosvt and f (t) is the tempo-
rally delta correlated random Gaussian noise. On the r
hand side of Eq.~1!, the terma cosvt normally represents
the signal one wants to amplify and the amplitude~a! is
much less than the static threshold (ac) of dynamical hys-
teresis. Actuallyac equals 2/3) and is the minimum value
of a above which the particle can make transitions betwe
the two potential wells aroundx561 even without the
noise. The point of departure in our study is to create
definition of the two stable ‘‘states’’ between which nois
will eventually induce transitions by including the ter
a cosvt in the dynamics itself~signal has to be added late
on! and taking arbitrary values ofa sufficiently greater than
ac . The creation of these two ‘‘states’’ results from the fo
lowing considerations: Consider Eq.~1! without the noise
term and, to make simple analytical demonstration possi
take a value ofa@1. Then the asymptotic periodic solutio
to the damped dynamics is given by

x~ t !5x01
a

v
sin vt ~2!
5471 © 1998 The American Physical Society
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to a very good approximation providedv is sufficiently high.
Substitution of Eq.~2! in Eq. ~1! leads to

x0S 12
3a2

2v2 2x0
2D50, ~3!

which means eitherx050 or x056A123a2/2v2. If x0
50, it corresponds to a situation where the average posi
of the particle is at the point of reflection symmetry (x50)
of the bistable potential. Since in the dynamics described
Eq. ~1! there is no preference between positive and nega
sides of the pointx50, we define an asymptotic solutio
with averagex coordinate equal to zero to be a symme
conserving one. Sincex0 has to be real,x050 is the only
possibility whena/v is greater thanA2/3. If, however,a/v
is less thanA2/3 there are two extra real solutions given
x056A123a2/2v2. Since these two new solutions do n
have the average position of the particle at the pointx50, we
call them symmetry broken ones. Thus, in this paper,
expression ‘‘dynamical symmetry breaking’’ is used in t
very specific sense of the average position of the particle
the asymptotic periodic solution to the dynamics not cor
sponding to the point of reflection symmetry of the bista
potential. The full symmetry of Eq.~1! without the noise
term is that it is invariant under the joint operations ofx→
2x and t→t1(2n11)p/v where n is any non-negative
integer. Thus any solution should map itself onto anot
solution under these symmetry transformations. On insp
tion of the solution given by Eq.~2! it is obvious that this is
indeed the case. Ifx050 the solution maps onto itself unde
these transformations whereas forx05bÞ0 the mapping is
onto a solution withx052b. Thus, according to our no
menclature, ‘‘dynamical symmetry breaking’’ also stands
the degeneracy of the solutions. However, we still have
check the nature of the stability of the solutions given by E
~2!.

If l is the factor by which an initial perturbation to th
solution grows over one cycle of the modulation over a ti
periodT(52p/v), then the stability exponentV is defined
by V5 ln l. From the solution given by Eq.~2! it is easy to
show thatV is given by (123x0

223a2/2v2). Thus in the
symmetry broken~SB! phase (x0Þ0) V is given byVSB5
22(12 3

2 x2) whereas in the symmetry conserved~SC!
phase (x050) V is given by VSC5(12 3

2 x2). Here x
5a/v. This immediately shows that whena/v is less than
A2/3 the SC solution is unstable whereas the SB soluti
are stable. To summarize, fora/v.A2/3 the only solution
that exists is the SC one and it is stable whereas fora/v
,A2/3 the SC solution still exists but is unstable. In th
latter domain there are two SB solutions also and they are
stable ones now and hence are the attractors of the dyna
with nonoverlapping domains of attraction. This simple de
onstration of the existence of dynamical symmetry break
~DSB! as well as the fact that only the ratioa/v ~rather than
a and v separately! is the relevant parameter was possib
only whena is much greater than unity.

Whena is greater thanac but is not large in magnitude
we have to resort to numerics to demonstrate the existenc
DSB. For example, in Fig. 1, we show the mean posit
(^x&) of the particle on the attractor, defined bŷx&
n
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5T21*t
T1tx(t)dt, as a function of frequencyv, with a51.0.

Symmetry breaking appears at a critical frequencyvc ,
which is, in general, a function of the value of amplitude~a!.
This exercise has been carried out for a large range of va
of the amplitude above the static thresholdac for dynamic
hysteresis and the data is summarized in Fig. 2. In this
gram, for a given value of the amplitude, as one increases
frequency the hysteresis loop areaA(a,v), defined as
A(a,v)5arx(t)d(cosvt) on the periodic attractor, alway
increases first until it reaches a maximum on reaching
dashed line and then starts decreasing. As one increase
frequency even further DSB appears on reaching the cont
ous line. Thus, for any~a,v! point to the right of the con-
tinuous line, there are two attractors with distinct domains
attraction. In the large amplitude region, as we have sho
analytically,vc(a) should be proportional toa so that the
slope of the continuous line should be unity on a log-l
plot. This is indeed borne out by the numerical results p
sented in Fig. 2. What is a little surprising, however, is th
this proportionality continues to hold for values of amplitu
all the way up to very close to unity even though the deriv
tion given above seems to suggest that the amplitude sh
be much larger than unity for this property to hold well.
the amplitude range ofac,a,G ~G being very close to 2!
there is yet another associated feature of DSB in addition

FIG. 1. Mean position of the particle on the attractor^x& as a
function of frequencyv for a51.0.

FIG. 2. Phase diagram for the maximal hysteresis loss and
onset of dynamical symmetry breaking in the amplitude-freque
~a-v! plane.
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the nonvanishing value of the average value ofx coordinate.
A plot of the areaA(a,v) of the hysteresis loop as a func
tion of frequency shows a local dip atv5vc(a). Figure 3
shows data in support of this observation fora50.8. How-
ever, this local dip disappears whena exceedsG. Presently,
we do not understand this feature at all.

III. DYNAMICAL SYMMETRY BREAKING
IN THE PRESENCE OF NOISE

When noise is turned on in Eq.~1!, the detection and
quantification of DSB immediately become somewhat m
complex. The dynamics is stochastic now and the concep
an attractor is no longer applicable. The motivation beh
introducing the particular definition of DSB in the noisele
case was that, on each attractor, the particle spends m
time on one side ofx50 than on the other and the avera
value of thex coordinate on each attractor is a natural a
simple quantifier of the extent of symmetry breaking. Th
quantification, however, becomes immediately inapplica
when noise is turned on since this average value will be z
This follows from the fact that the particle will tunnel bac
and forth between the two potential wells and spend eq
time on both~since the characteristics of the noise is ind
pendent of the position coordinate!. To motivate the defini-
tions that we are going to introduce we begin by consider
the noise to be a perturbation. If the parameters of the
namics are such that, without noise, the attractor is of
symmetry conserved type, then the effect of adding the n
is, roughly speaking, of the following nature: On a time sc
of the order of the period of modulation the particle moti
is sinusoidal. However, the cycle averagedx coordinate
(^x&) @18# around which this approximately sinusoidal m
tion takes place keeps on fluctuating due to the presenc
the noise—with the most probable value of^x& being zero.
On the other hand, for parameter values correspondin
symmetry broken dynamics~in the absence of noise!, the
distribution of the cycle averagedx coordinate will have two
separate peaks symmetrically situated aroundx50.

On the basis of the intuitive picture presented in the p

FIG. 3. Hysteresis loop areaA(a,v) and the mean position̂x&,
denoted by the symbolsd and h, respectively, are plotted as
function of frequency~v! in the same diagram to show that the d
in the loop area takes place exactly at the onset of dynamical s
metry breaking. Here amplitude~a! equals 0.8. The vertical line a
the critical frequency is a guide to the eye.
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vious paragraph the procedure we adopt to detect the p
ence of DSB when noise is applied is the following: Fro
thex(t) data generated via integration of the Langevin eq
tion, compute the average value of thex coordinate during
successive slabs of durationT ~the time period of modula-
tion! on the time axis. Generate a histogram for these val
of ^x&. Then study this sequence of histograms as a func
of frequency. At the onset of DSB the histogram for^x& will
undergo a transition from unimodal to bimodal around^x&
50. That this is indeed the case is illustrated in Figs. 4~a! to
4~d! for a5100.0. The dimensionless temperature~e!, de-
fined as the ratio of the Boltzmann constant times the te
perature divided by the height of the barrier separating
two potential minima, equals 0.6 here. The actual quantifi
tion of the extent of DSB can be done in several ways. F
example, one can~i! take the positions of the two peaks o
~ii ! try to fit some function to the histogram that will conta
the extent of symmetry breaking as a parameter. Here
adopt the second procedure in which the distributionP(^x&)
is fitted as a sum of two Gaussians with the same widths but
centered at6d. Weights of the two Gaussians,w1 andw2 ,
are allowed to be different in the fitting procedure to acco
modate the possibility that the run may not have been lo
enough for the particle to have spent equal time in the t
wells. d is taken to be the measure of symmetry breaki
Clearly this procedure is somewhat ad hoc since we have
proved that the functional form of the histogram is actua
of the type assumed. In any case Fig. 5 shows a plot ofd~v!
thus calculated~in analogy to Fig. 1 for the noiseless case!.

Next, we address the issue of temporal correlations in
discrete time series for̂x&. As is standard, the autocorrela
tion function is calculated and Fig. 6 presents some typ
data both on linear and semilogarithmic formats. The f
that the semilogarithmic plot of Fig. 6~b! is a straight line to
a very good approximation means that there is indeed a v
well defined and unique time scale that corresponds to in
well tunneling. This time scalet~v! is the analog of the
conventional Kramers’ time scale that one gets in the
sence of the modulation and it describes and quantifies t
poral correlations on a time scale much longer than the
riod of modulation—at least in the strongly symmet

-

FIG. 4. Histogram for the cycle averagedx coordinate (̂x&)
shown for four different values of the time period (T): ~a! T
50.07, ~b! T50.055, ~c! T50.045, and~d! T50.035. The values
of amplitude~a! and the dimensionless temperature~e! are 100.0
and 0.6, respectively.
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broken regime and for large amplitudes of modulation.
Fig. 5 we plot t~v! also. We wish to emphasize that th
existence of this new time scale and its dependence on
quency is the central point of this paper. In Fig. 5 notice t
as frequency becomes very larged saturates to a value clos
to unity andt~v! saturates~apart from numerical uncertain
ties! to a constantt0 . The reason for this saturation is that
the frequency becomes very large the modulation of the fo
a cosvt averages itself out to zero on a time scale lar

FIG. 5. Autocorrelation time@t~v!# for ^x& and the extent of
symmetry breaking@d~v!# are plotted as a function of frequency~v!
with e50.6 anda5100.0. Symbols ford~v! and t~v! are d and
h, respectively.

FIG. 6. Normalized autocorrelation functionC(t)5Š^x&(t1t0)
3^x&(t0)‹/Š^x&2

‹(t)plotted in ~a! linear format and~b! semiloga-
rithmic format for the parameter valuesa510.0, T50.25, ande
50.4. Here time is understood to be the cycle number multiplied
the period (T) of modulation.
e-
t

m
r

than a few times the period of modulation more and m
effectively. In the limit ofv going to infinity this autocan-
cellation effect is complete and the modulation drops out
the dynamics on this larger time scale. Thusd and t will
assume values that one gets from Eq.~1! without the modu-
lation term. The fact that the limiting value ofd should be
close to unity follows from the form of the bistable potenti
whereas the autocorrelation time for the modulation free c
can be computed separately and it turns out to be same at0 .
This has been checked for several values of the dimens
less temperature~e! and amplitude~a! and t0 is found to
depend on temperature only—as is expected. For exampl
Fig. 5, the dimensionless temperature is 0.6 and the expe
saturation value oft~v!, as found from the separate Langev
integration of the modulation free case, is 11.6. To with
numerical uncertainties this agrees very well with the d
for t~v! in the largev limit. The other important feature tha
has emerged out of our numerical computations is that bot
andd seem to depend only on the ratioa/v for large ampli-
tudes for a given value of the temperature. We must po
out that the procedure that we have adopted for detection
quantification of DSB works only when noise can be trea
as a relatively weak perturbation, i.e., the period of modu
tion at the symmetry breaking transition is much less th
the Kramers’ tunneling time for the unperturbed case. Fo
fixed temperature, this will be more and more accurat
valid as the amplitude~a! increases since the critical fre
quency will also then keep on increasing. When noise can
be treated as a weak perturbation the situation is much m
difficult and we have no simple analog to the abov
mentioned prescription.

IV. STOCHASTIC RESONANCE

It should be apparent from the discussion in the previo
section that the temporal properties of the cycle averagex
coordinate in the solution of Eq.~1! are very similar, if not
qualitatively identical, to the real time solution of the sam
equation without the modulation—although with a frequen
dependent time scale oft~v! that is analogous to~but differ-
ent from! the Kramers’ time for thermal tunneling in th
modulation free case. This is true provided the amplitude~a!
is sufficiently high for the given value of the temperatur
Thus we have all the ingredients needed for observing
chastic resonance~SR!—although now corresponding to th
dynamics of the cycle averagedx coordinate and witht~v!
playing the role of the internal time scale. Sincet~v! de-
pends on amplitude~a! and frequency~v! also in addition to
the temperature we have more control parameters to tune
internal time scale. Once this is noted, it is straightforward
observe SR by applying a signal by way of adding a term
the form g cosv8t to the right-hand side of Eq.~1!. For
example, in Fig. 7 we show this effect by plotting the r
sponse as a function of temperature for a fixed signal term
is to be noted that the response plotted here is not the sig
to-noise ratio, as is more conventional. Rather we sim
take the time series for the cycle averagedx coordinate and
compute the power in the first harmonic corresponding to
signal frequency. For the purpose of demonstration, whic
our goal here, it is adequate. We have made a system

y
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study of the temperature at which the response peaks
function of the frequency of the signal to be amplified and
agrees with the understanding that already exists in the
erature for the more conventional~modulation free! case.
Also the power in the response is found to be proportiona
the square of the signal amplitude~g!—as is expected.

V. DISCUSSION

In this paper we have reported on the phenomenon
dynamical symmetry breaking in a modulated bistable pot
tial well in some detail and have demonstrated the possib
of its application in the context of stochastic resonance
should be possible to realize this particular applicat
through experiments, especially using analog simulat
techniques@9#. In this paper we have deliberately avoide

FIG. 7. Response is plotted as a function of the dimension
temperature~e! with the amplitude and the time period of the sign
equal to 0.03 each.
o
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using the language of switching to describe the dynam
since it becomes quite meaningless to do so at the high
ues of amplitude and frequency that we are primarily int
ested in. The hysteresis loop looks almost elliptical in t
parameter domain. But we should point out that what is
scribed in the literature as the presence or absence of d
ministic switching at lower values of the amplitude do
smoothly evolve into the concept of dynamical symme
breaking although they do not quite mean the same th
There are some issues arising out of our results that nee
be addressed.~i! The qualitative nature of the~discrete! time
evolution of the cycle averagedx coordinate in the dynamics
of Eq. ~1! seems to be very similar to the~continuous! time
evolution ofx(t) in Eq. ~1! without the modulation term. As
we have shown here, there is a very well defined interw
tunneling time that can be thought of as a pseudo-Kram
time. Is there is a quantitatively precise mapping betwe
these two problems on a time scale sufficiently longer th
the period of modulation? That will make it possible to ha
an analytical derivation of the tunneling timet~v!. ~ii ! It is
straightforward to extend the model of the single damp
oscillator to that of a coupled lattice of such oscillators.
addition to the possibility of enriching the phenomena th
are already known in these problems, including array
hanced stochastic resonance, this can serve as a more m
scopic model exhibiting dynamical phase transitions@19–
28#. In the context of this last problem it will obviously b
necessary to properly define and quantify symmetry bre
ing. We hope that the discussion presented in Sec. III of
paper will serve as a prelude to that.

ACKNOWLEDGMENT

One of the authors~D.B.! acknowledges the University
Grants Commission of India for financial support.

ss
S.

n,

for

tity

-

@1# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453
~1981!.

@2# Proceedings of the NATO Advanced Research Workshop
Stochastic Resonance in Physics and Biology, San Die
1992, edited by F. Moss, A. Bulsara, and M. F. Shlesinger@J.
Stat. Phys.70, 1–512~1993!#.

@3# Proceedings of the International Workshop on Fluctuations
Physics and Biology: Stochastic Resonance, Signal Proces
and Related Phenomena, Elba, Italy, 5–10 June 1994, ed
by R. Mannella, P. V. E. McClintock and A. Bulsara@Nuovo
Cimento Soc. Ital. Fis. D17D, 661–981~1995!#.

@4# P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62,
251 ~1990!; P. Jung, Phys. Rep.234, ~1993!.

@5# Noise in Nonlinear Dynamical Systems, edited by F. Moss a
P. V. E. McClintock~Cambridge University Press, Cambridg
1989!.

@6# A. Bulsara and L. Gammaitoni, Phys. Today49„3…, 39 ~1996!.
@7# F. Apostolico, L. Gammaitoni, F. Marchesoni, and S. Santu

Phys. Rev. E55, 36 ~1997!.
@8# E. Reibold, W. Just, J. Becker, and H. Benner, Phys. Rev. L

78, 3101~1997!.
@9# S. Fauve and F. Heslot, Phys. Lett.97A, 5 ~1983!.
n
o,

n
g,

ed

d

i,

tt.

@10# V. A. Shneidman, P. Jung, and P. Ha¨nggi, Phys. Rev. Lett.72,
2682 ~1994!.

@11# L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and
Santucci, Phys. Rev. E51, R3799~1995!.

@12# H. Gang, G. Nicolis, and C. Nocolis, Phys. Rev. A42, 2030
~1990!.

@13# J. C. Phillips and K. Schulten, Phys. Rev. E52, 2473
~1995!.

@14# D. Bose and S. Sarkar, Phys. Lett. A232, 49 ~1997!.
@15# D. Bose and S. Sarkar, Phys. Rev. E56, 6581~1997!.
@16# P. Jung, G. Gray, R. Roy, and P. Mandel, Phys. Rev. Lett.65,

1873 ~1990!.
@17# A. Hohl, H. van der Linden, R. Roy, and G. H. Goldsztei

Phys. Rev. Lett.74, 2220~1995!.
@18# Definition and notation for mean position on the attractor

the noiseless case is the same as the cycle averagedx coordi-
nate here. The former, however, is a time independent quan
unlike the latter.

@19# T. Tome and M. J. de Oliveira, Phys. Rev. A41, 4251~1990!.
@20# W. Lo and R. A. Pelcovits, Phys. Rev. A42, 7471~1990!.
@21# M. Acharya and B. K. Chakrabarti, inAnnual Reviews of Com

putational Physics, edited by D. Stauffer~World Scientific,



tt

d

v. A

5476 PRE 58SUBIR K. SARKAR AND DEBASHISH BOSE
Singapore, 1994!, Vol. 1, p 107.
@22# A. Bulsara and G. Schmera, Phys. Rev. E47, 3734~1993!.
@23# B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Le

75, 4157~1995!.
@24# A. Neiman, Phys. Rev. E49, 3484~1994!.
@25# K. Wiesenfeld, Phys. Rev. A44, 3543~1991!.
.

@26# J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, an
A. R. Bulsara, Phys. Rev. Lett.75, 3 ~1995!.

@27# K. Wiesenfeld and P. Hadley, Phys. Rev. Lett.62, 1335
~1989!.

@28# P. Jung, U. Behn, E. Pantazelou, and F. Moss, Phys. Re
46, R1709~1992!.


